If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-18X+49=0
a = 1; b = -18; c = +49;
Δ = b2-4ac
Δ = -182-4·1·49
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-8\sqrt{2}}{2*1}=\frac{18-8\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+8\sqrt{2}}{2*1}=\frac{18+8\sqrt{2}}{2} $
| 9x+19+8=180 | | 0.33=0.5/x | | 6+8x+2=6x | | 10y=30+5y | | X÷3+2x+1=23 | | 2×4r+17=25 | | (2x+10)*(x)=80 | | 5x-(100+2x)=4x-2(10+x | | 12y+6/3=40 | | 6x-6+5x-8=180 | | 12+3-4x=3-3x+6 | | 12x-4/x=3 | | 3x(x-5)=5x-3 | | -5x+4=2x-31 | | 5x-7=1/2(11+15) | | A^2-18a=-80 | | 21-4x+6=38 | | -2=2/5t | | 1/3+x/5=7/3 | | 1/8g=-9 | | 2x+24+3x=180 | | x+3=29-x | | X+4=8+2x | | -5x4=2x-31 | | 5x+4=2x-31 | | 9x+27x-8=x | | 2x+4x-5=3x+1 | | 3z(2z+11)=11 | | 3b+2=6 | | y^2+1/2y+1/16=0 | | 0=141-16x^2 | | (5x+29)+(7x-11)=180 |